LOW-COST HIGH-QUALITY v BEAM

A. D. Krisch University of Michigan August 8, 1968

We are proposing that rather than using a large block of steel to stop the μ 's in a ν beam another approach should be used. The essential points of this technique are:

- (1) Use a pair of quads (Q_1, Q_2) , a collimator, and a plug to stop all pions except in the range 30 ± 8 GeV/c (or 60 ± 15 GeV/c).
- (2) Use a pair of quads (Q_3 , Q_4) to focus these π 's so that they remain in a 1-ft by 1-ft pipe. (38 GeV/c are parallel, 30 GeV/c focus at π -stop, 22 GeV/c focus at 1/2 way to π -stop)
- (3) Use two bending magnets (#1 and #2) to put a 3-ft transverse displacement in the beam. This sets the polarity of the π beam. It also removes any 150 GeV/c μ 's made before the high-momentum π 's stop in the plug.
- (4) The π 's decay in a 600-m pipe which is very narrow (2 ft by 1 ft).
- (5) The μ 's from these decays are either:
 - a) stopped in the 600 m of earth surrounding the pipe
 - b) deflected past the detector by the small-aperture bending magnet which has a larger aperture than the decay pipe.

This has somewhat less intensity than a "steel-block" beam, but has the following advantages:

- (1) low cost (less than \$2 million).
- (2) monochromatic.
- (3) high quality--the transverse position of the origin of the ν is known to ± 1 ft. Therefore, the angle of the ν is known to ± 0.001 rad at worst.
- (4) more flexibility -- easier to change if unexpected problems occur.
- (5) the smaller transverse position of the ν origin allows a smaller transverse area of the detector. This gives more interactions for the same detector weight.

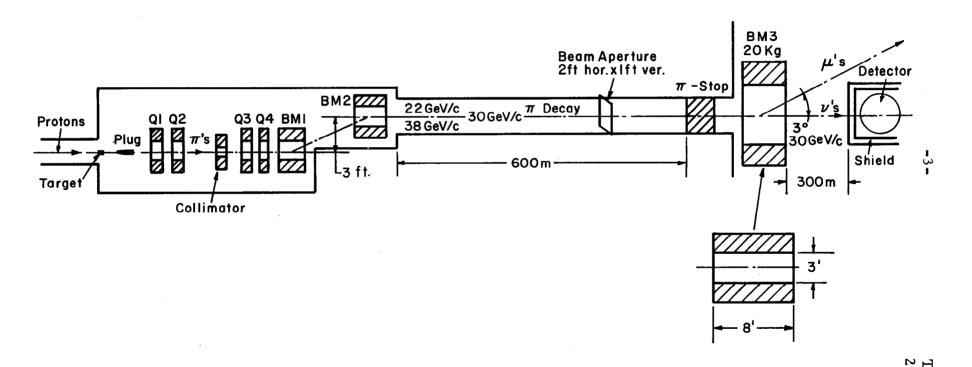


Fig. 1. Low-cost high quality neutrino beam: pions of one sign at 30 \pm 8 Gev/c decay in a small buried pipe. The central energy can be varied.